
Figure 7: (bottom) Each of these 14 images is a complex plot of the eigen-
values of a sample of matrices where all elements are fixed integers except
for two elements that follow a (continuous) uniform distribution.

Figure 1: Plot on the complex plane of the eigenvalues from a sample of 3×109 matrices from the set of 5×5 matrices
with entries in {−1,0,1}. This class of matrices contains a total of 352 ≈ 8.5×1011 elements. The plot is viewed from
−3.3− 3.3i to 3.3+ 3.3i. Symmetry across the real and imaginary axes is used to give an effective 6× 1010 points.
Coloring is based on the density at each point where the highest density points are purple and the lowest density is yellow.
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Figure 3: Distribution of the real eigenvalues from figure 1 on a logarithmic scale.

Computation
Matlab was used to compute the eigenvalues for samples of matrices from various classes. It was chosen as it provides fast
eigenvalue computation as well as the parallel computing toolbox to maximize computing power.

Computing the raw data: Matrices are sampled from the appropriate distribution and the eigenvalues and their
respective condition numbers are computed using Matlab’s condeig function. Data is saved to .mat files and broken into
chunks no larger than 500mb to avoid using more memory than is available.

Processing the data: The data was processed into a grid of points where each point represents a pixel in the output
image. If coloring is by density, then a grid of integers is used and the number of eigenvalues falling in each point is
counted. If coloring is by condition number, then each grid point is the average eigenvalue condition number for the
eigenvalues that fall within that point.

Making an image: The final output plot is made using Matlab. The logarithm of the raw data for either the eigenvalue
density or average condition number is plotted on a heat map with the appropriate colormap applied.

Bounded Integer Matrices
The set of n×n matrices with integer coefficients ranging from −p to p
contains pn2

elements. The eigenvalues of these matrices remain bounded
within a circle in the complex plane of radius pn. When these eigenval-
ues are plotted on the complex plane, some interesting structure arises.
Figure 1 shows a plot of a sample for 5×5 matrices with coefficients in
{−1,0,1}.

Regions containing no eigenvalues except for at the center appear, we
call these eigenvalue exclusion regions. The exclusion regions are clearly
visible in figure 1. They are largest around integers along the real axis.
We are working on determining a bound for the size of the exclusion
regions. Specifically, we are looking for a bound on the size of the
exclusion region centered at the origin (figure 2). As a starting point we
are interested in the size of the exclusion region on the real axis. We are
looking at the correlation between the coefficients of the linear portion
of the characteristic polynomials to determine a bound. For the bound in
the complex plane we are looking into the coefficients of the quadratic
portion of the characteristic polynomials.

Beta Distribution
Interesting properties of classes of random matrices appear
when the eigenvalues are computed for matrices where the
entries follow a shifted and scaled Beta distribution (figure 1).
Figures 2 and 3 show plots on the complex plane of the eigen-
values for large samples of matrices with entries following a
distribution 2Xi, j −1 for Xi, j ∼ Beta(α = 0.01,β = 0.01) for
3×3 and 4×4 matrices respectively.

The nodes visible on the plots (most visible in figure 3) are the
set of eigenvalues of matrices whose entries are 1 or −1. The
curves connecting these nodes are algebraic curves arising
from the roots of the characteristic polynomial of a matrix
whose entries are −1,1 with the exception of one entries that
varies from −1 to 1.

The coloring in figure 2 shows the average eigenvalue condi-
tion number for the data computed. Clearly as eigenvalues
approach the real axis (especially near the origin) the condi-
tion number increases (as is shown in pink).

The coloring in figure 3 shows the density at each point.
White indicates the highest density, typically at the nodes,
and blue is the lowest density.

Figure 6: Eigenvalues of 106 randomly sampled 4×4 matrices with entries
2Xi, j − 1 for Xi, j ∼ Beta(α = 0.01,β = 0.01), Xi, j i.i.d. The plot is on the
complex plane viewed from −3−3i to 3+3i. Coloring indicates the density
of eigenvalues where blue is the least dense and white is the highest density.
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Figure 2: The plot from fig-
ure 1 viewed on −0.5−0.5i
to 0.5+0.5i. The eigenvalues
along the real axis are visible
and a a clear gap can be seen
between the smallest real eigen-
values and the origin. Other
points close to the origin are

Figure 5: Eigenvalues of 6× 106 randomly sampled 3× 3 matrices with
entries 2Xi, j − 1 for Xi, j ∼ Beta(α = 0.01,β = 0.01), Xi, j i.i.d. The plot is
on the complex plane viewed from −2.5− 2.5i to 2.5+ 2.5i]. Coloring
is based on the log of the average eigenvalue condition number where the
minimum is 1 (colored red) and the maximum is 1.27×104 (colored pink).

Figure 4: Probability distribution function for a random variable X where
X = 2Y −1 and Y ∼ Beta(α = 0.01,β = 0.01). That is, X is a shifted and
scaled Beta random variable where the probability of being near 1 or −1 is
high and the probability of being near zero is small.
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