Visualizing Eigenvalues of Structured Random Matrices

Steven E. Thornton and Robert M. Corless
Western University, London, Canada

Figure 1 : Plot on the complex plane of the eigenvalues from a sample of 3×10^{9} matrices from the set of 5×5 matrices
with entries in $\{-1,0,1\}$. This class of matrices contains a total of of $3^{2} \approx 2.5 \times 10^{2}$ elements. The plot is viewed from with entries in $\{-1,0,1\}$. This class of matrices contain a total of of $3^{3^{2}} \approx 8.5 \times 10^{11}$ elements. The plot is viewed from
$-3,3-3.3 i$ to $3.3+3.3 i$. Symmetry across the real and imaginaty axes is used to give an effective 6×10^{10} points. Coloring is based on the density at each point where the highest density points are purple and the lowest density is yellow.

Bounded Integer Matrices

The set of $n \times n$ matrices with integer coefficients ranging from $-p$ to contains $p^{n^{2}}$ elements. The eigenvalues of these matrices remain bounded within a circle in the complex plane of radius $p n$. When these eigenval ies are plotted on the complex plane, some interesting structure arise Figure 1 shows a plot of a sample for 5×5 matrices with coefficients in

Regions containing no eigenvalues except for at the center appear, we Regions containing no eigenvalues except for at the center appear, we
call these eigenvalue exclusion regions. The exclusion regions are clearly visible in figure 1 . They are largest around integers along the real axis. We are working on determining a bound for the size of the exclusion regions. Specifically, we are looking for a bound on the size of the exclusion region centered at the origin (figure 2). As a starting point w are interested in the size of the exclusion region on the real axis. We are ooking at the correlation between the coefficients of the linear portio of the characteristic polynomials to determine a bound. For the bound in he complex plane we are looking into the coefficients of the quadratic portion of the characteristic polynomials.

Figure 2: The plot from figure 1 viewed on $-0.5-0.5 t$ to $0.5+0.5 i$. The eigenvalues
along the real axis are visible along the real axis are visible
and a a clear geap can be scen between the smallestreal eigenbetween tue smalestrieale eigen-
values and the origin. Other points close to the origin are

Computation

Beta Distribution
nteresting properties of classes of random matrices appea hen the eigenvalues are computed for matrices where the Atries follow a shifted and scaled Beta distribution (figure gures 2 and 3 show plots on the complex plane of the eige alues for large samples of matrices with entries foirowing stribution $2 X_{i, j}-1$ for $X_{i, j} \sim \operatorname{Beta}(\alpha=0.01, \beta=0.01)$ fo

The nodes visible on the plots (most visible in figure 3) are the set of eigenvalues of matrices whose entries are 1 or -1 . The curves connecting these nodes are algebraic curves arising from the roots of the characteristic polynomial of a matrix whose entries are $-1,1$ with the exception of one entries that varies from -1 to 1 .
e coloring in figure 2 shows 1 . ion number for the data computed. Clearly as eigenvalue approach the real axis (especially near the origin) the cond: on number increases (as is shown in pink.

The coloring in figure 3 shows the density at each poin White indicates the highest density, typically at the node and blue is the lowest density.

Rigure 6 : Eigenvalues of 10° randomly sampled 4×4 matrices with entries $2 X_{i, j}-1$ for $X_{i, j} \sim$ Beta $(\alpha=0.01, \beta=0.01), X_{i, j}$ i.i.d. The plot is on the complex plane viewed from $-3-3 i t 03+3$. Coloring indicates the density
of eigenvalues where blue is the least dense and white is the highest density.

Pigure 4: Probability distribution function for a random variable X where
$X=2 Y-1$ and $Y \sim$ Beta $(\alpha=0.01, \beta=0.01)$. That is, X is a shifted and $X=2 Y-1$ and $Y \sim \operatorname{Beta}(\alpha=0.01, \beta=0.01)$. That is, X is a shiffed and
scaled Bela random variable where the probability of being near 1 or -1 is high and the probability of being near zero is small.

Higure 5 : Eigenvalues of $6 \times 10^{\circ}$ randomly sampled 3×3 matrices wit enries $2 X_{i, j}-1$ for $X_{i j} \sim$ Bela $(\alpha=0.01, \beta=0.01), X_{i, j}$ i.i.d. The plot is on the complex plane viewed from $-2.5-2.5 i$ to $2.5+2.55]$. Coloring
is based on the log of the average eigenvalue condition number where the is based on tue log of hie average eigenvalue condition number where nic

References

in and Loki Jöryenson. Visisble structur American Mathematical Monthly, pagees 897-910, 2001.

21 Peler Borw
als. 1996.
[3] Dan Chisisensen. Pols of roots of polynomials with integer coeff
http://jdc...math. uvo. ca/roots//Accessed: 2015-10-01.
AI A. M. Odlyzke and B. Poonen. Zeros of plys. cients. L'Enseiznement Math, pages 317-348, 1993.
Figure 7 : (botom) Each of these 14 images is a complex plot of the eigen for two elements shat follow a (continuous) uniform distribution.

