Bohemian Matrices
Home
Gallery
/
Publications
/
Posters
/
Talks
/
CPDB
/
A density plot in the complex plane of the Bohemian eigenvalues of a sample of 10 million 19x19 $(p=18)$ doubly companion matrices: $$\begin{bmatrix} -\alpha_1 & -\alpha_2 & \cdots & -\alpha_p & -\alpha_{p+1} - \beta_{p+1}\\ 1 & 0 & \cdots & 0 & -\beta_p\\ 0 & 1 & \cdots & 0 & -\beta_{p-1}\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 1 & -\beta_1 \end{bmatrix}$$ with $\alpha_k \in \{-1, 1\}$, and $\beta_k \in \{-1, 1\}$. Color represents the eigenvalue density and the plot is viewed on [-1.7-1.7i, 1.7+1.7i].